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1. Introduction 
 
 Large scale national studies that require in-person interaction with study subjects, such as 
in-home environmental or biological data collection, often employ multistage designs in which 
sufficient numbers of study subjects are clustered into small geographic regions.  This clustering 
of study subjects is typically employed to localize data collection activities, thereby producing 
cost efficiencies in the data collection.  These resulting financial savings could then be allocated 
to other study needs, such as collecting more detailed exposure data for each study subject and/or 
collecting other measures thought to be important for future investigations.  Additionally, 
clustering may offer a higher degree of incentive for collecting certain types of information, such 
as expensive to collect community-level information or subject-specific information that is also 
community dependent.  If a smaller number of communities are involved, collecting this type of 
potentially important information may be possible, whereas if a large number of communities are 
selected it may become infeasible or cost prohibitive to collect this data.  Other possible benefits 
include the ability to assess within region, or within community, relationships (i.e., analyze 
relationships between exposures and outcomes for each community), a higher potential for 
collecting specialized measures (e.g., if communities are selected to correspond to an 
organization capable of collecting the specialized measure), and potentially higher rates of 
recruitment and retention as a result of communities of subjects feeling “ownership” in the study.  
Thus, there are many apparent benefits to clustering the design in a small number of 
communities or geographic regions.   

 
While clustering of study subjects into geographic regions may provide efficiencies in 

cost, data collection, and the ability to collect specialized or difficult to assess measures, there 
may also be disadvantages to clustering subjects into a small number of regions.  For example, a 
less diverse sample, in terms of both health outcomes and exposures, may be selected leading to 
lower precision in estimating parameters of interest and assessing important hypotheses. 
Additionally, assessment of relationships between health outcomes and community level 
characteristics may be less powerful as the number of communities decreases.  In other words, 
sample clustering can result in a “cost” that is the result of a loss of information when compared 
to a simple random sample of the same size.  The magnitude of this cost will depend on the 
relative amounts of within cluster variability and between cluster variability in both the 
exposures of interest and in the health outcome of interest.  For example, if interest is in 
assessing the relationship between a cluster-specific exposure factor (i.e., an exposure factor that 
is the same for all individuals in the same cluster so that variability in the exposure only occurs 
between clusters), then allocating the sample in a small number of clusters will result in a loss of 
information; however, if interest is in assessing the relationship between a health outcome and an 
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exposure factor that varies significantly within a cluster and very little between clusters, then 
there will likely be a much smaller loss of information resulting from clustering in the design.   

 
Since one of the NCS givens calls for the study to “… include clustering of samples to 

allow for efficient collection of exposure and outcome measures, and measurement of context 
(physical and social)”, an important question that must be considered when designing the study 
is what degree of clustering should be employed.  In other words, how many clusters are needed 
for the NCS to efficiently collect the necessary data while maintaining the ability to powerfully 
assess the hypotheses of interest in the NCS?  The answer to this question depends on the 
characteristics of the exposures and the health outcomes considered in the NCS hypotheses, and 
therefore, as in many of the NCS design considerations, there is no single solution to this 
complex problem.  This paper provides a detailed analysis of some of the statistical 
considerations related to sample clustering for the NCS so that an informed decision as to the 
appropriate number of clusters for the NCS can be made.  In particular, since estimation of 
relationships between exposures and outcomes is of primary interest for the NCS, we explore the 
impacts of within and between cluster variability in outcomes and exposures on the precision (or 
statistical power) for assessing these relationships, and indicate how these effects vary as the 
number of clusters varies (given an overall sample size of 100,000).  Additionally, we compare 
the ability for the NCS to investigate community-specific relationships (i.e., relationships within 
a specific cluster) with the ability for the NCS to investigate hypotheses and relationships that 
are National in scope (i.e., relationships that span across all clusters combined).  These 
comparisons are made by calculating the impact of clustering and average size of clusters on the 
standard error of parameter estimates that relate health outcomes and exposures.  For the analysis 
of relationships across the NCS cohort (for both binary and continuous outcomes), we consider 
exposures that vary within cluster as well as community-specific measures that are common to 
all members of a cluster/community; whereas, for the analysis of community-specific 
relationships, we will assume that to some degree, exposure varies within cluster and we 
concentrate on assessing relationships between continuous outcomes and exposures.   

 
The remainder of this report is organized in the following manner.  Section 2 presents the 

statistical considerations related to sample clustering and briefly outlines the methods used in 
assessing the impacts of sample clustering.  Section 3 presents the results of applying these 
methods and indicates the tradeoffs between selecting a larger number of clusters with fewer 
people in each cluster versus a smaller number of clusters with a larger number of people in each 
cluster.  Finally, Section 4 discusses the relevant conclusions that result from this investigation.  
Further details of the statistical computations can be found in the Appendix.  
 
2. Statistical Methods and Considerations Related to Sample Clustering in the NCS 
 

From a statistical standpoint, the advantages or disadvantages associated with sample 
clustering can be measured in terms of the loss or gain in precision (i.e., increased variance) in 
estimates of relationships of interest or the loss or gain in power for detecting these relationships.  
Much has been written in the sample survey literature when it comes to assessing the effect of 
design clustering, however, most of this literature is related to the relatively simple context 
where the goal is to assess the precision that a planned study might have to estimate a summary 
quantity, such as a mean, of a selected variable (either a health outcome variable or an exposure 
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variable).  As mentioned above, in the context of the NCS, the situation is more complicated 
since estimation of relationships between exposures and outcomes is of primary interest.  Thus, it 
is with regards to estimation of relationships that we must assess the impact of design clustering.  
In the following subsections we provide brief descriptions of the parameters and formulas that 
are utilized in assessing the impact of clustering the study design when estimating relationships 
between health outcomes and exposures (note that we are not evaluating impacts of unequal 
weighting).  In particular, Section 2.1 provides information relevant to assessing the impact of 
clustering when estimating a relationship between a continuous outcome and a continuous 
exposure and Section 2.2 provides the corresponding discussion when estimating the relationship 
between a binary outcome and a binary exposure.  Further details of the statistical computations 
and derivation of the relevant formulas are provided in the Appendix, while implications of the 
computations are explored in the results provided in Section 3. 
 
2.1  Impact of Clustering for a Continuous Outcome and a Continuous Exposure  

 
Suppose we are interested in exploring the relationship between an exposure and a 

continuous outcome, based on data from m clusters of n individuals (with N=m·n).  For 
simplicity, we consider a single exposure variable and let Xij denote the exposure for individual j 
in cluster i.  (In practice, of course, there will also be interest in including additional covariates.)  
Letting Yij be this individual’s corresponding response/outcome, suppose that the model relating 
outcome to exposure is as follows:    
 
 Yij = β0 + αi + β1*Xij + εij     for i=1,…,m  and  j=1,…,n  (1) 
 
where β=( β0, β1)T are the parameters of the model, α=(α1, …, αm)T is a vector of independent 
mean zero normally distributed random effects for each cluster (with standard deviation σb), and 
ε=(ε11, …, ε1n, …, εmn) is a vector of independent mean zero normally distributed errors for each 
individual (with standard deviation σw).  The model indicates that there is some relationship 
between the health outcome Y and the exposure factor X.   The strength of this relationship 
depends on the value of β1, the parameter of interest, relative to the distribution of X and the 
magnitude of the standard deviation for αi and εij.  Additionally, inclusion of the random effect α 
allows for clustering in the health outcome that is not explained by its dependence on the 
exposure factor.   
 
 Under model (1) and assuming that Xij follows a similar random effects model  
 
 Xij = µ0 + νi + δij     for i=1,…,m  and  j=1,…,n  (2) 
 
where νi and δij are random variables with mean zero and standard deviations τb and τw, 
respectively, we can derive an approximate formula for the variance of 1β̂ , the maximum 
likelihood estimate of β1, under a clustered design.  In particular,  
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where λ is the within cluster correlation of the exposure variable (or the portion of the variability 
in X that is explained by cluster-to-cluster variability), and ρ is the within cluster correlation of 
the health outcome after removing the effect of X (or the portion of the variability in Y given X 
that is explained by cluster-to-cluster variability) as described in Table 1.  Note that the 
parameter ρ does not represent the marginal within cluster correlation in the health outcome, but 
represents the within cluster correlation in the health outcome given the exposure factor.  The 
marginal within cluster correlation in the health outcome depends on this conditional clustering 
as well as the amount of clustering in the exposure factor and the strength of the relationship 
between the health outcome and the exposure factor. 
 
Table 1. Summary of model and distributional assumptions. 
 

Variable Model Distributions 
Parameters Impacting 

Design Effects and 
Powera 

 Health 
Outcome  Yij = β0 + αi + β1*Xij + εij    

 αi ~ N(0,  2
bσ ) 

εij ~ N(0,  2
wσ ) 

 22

2

bw

b

σσ
σ

ρ
+

=  

 Exposure Xij = µ0 + νi + δij       
 υi ~ N(0,  2

bτ ) 

δij ~ N(0,  2
wτ ) 
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 a ρ is the within cluster correlation in the health outcome given the exposure, and λ is the within 
cluster correlation in the exposure factor 

 
The above formula for the variance of the estimate of β1 can then be used to compare 

different designs in terms of their ability to estimate and detect relationships between exposures 
and health outcomes across the entire cohort.  For example, one common measure when 
comparing different designs is calculating the ratio of the variance of a parameter estimate under 
one design to the corresponding variance under the other design.  For the case where the 
comparison design is considered to be a simple random sample (i.e., a design with 1 subject in 
each of N clusters where N=mn) this ratio is typically referred to as a design effect.  Since a 
simple random sample is infeasible for the NCS, and violates one of the NCS givens, in Section 
3 we compute “relative design effects” as the ratio of the variance of a parameter estimate under 
the selected design to the corresponding variance of the parameter estimate under a design that 
selects 250 clusters of size 400 individuals.   
 

If interest is in estimating the relationship between the exposure factor and the health 
outcome for a single cluster of individuals (instead of for the entire cohort), then Yij = b0i + 

b1i*Xij + eij for j=1,…,n, and the variance of the estimate of ib1̂  is 
)1(2

2

−nw

w

τ
σ

.  This formula can 

then be used to compute design effects (or relative design effects) and power for estimating 
relationships within a single cluster of individuals.  (Note that in order to apply such a model the 
exposure factor of interest must vary within clusters so that the within cluster correlation of the 
exposure factor, λ, cannot be equal to 1.0.) 
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2.2  Impact of Clustering for a Binary Outcome and a Binary Exposure  
 

Instead of studying the relationship between an exposure and a continuous outcome, 
suppose we are interested in exploring the relationship between a binary outcome and an 
exposure variable again based on data from clusters of individuals.  In this more complex setting 
we consider the exposure to be dichotomous and let Xij be the indicator of exposure for 
individual j in cluster i.  Letting Yij be this individual’s corresponding response, suppose that we 
are interested in fitting the following marginal logistic model: 
 
 Logit[Pr(Yij=1|Xij)] = Logit(µij) = β0 + β1 Xij  for i=1,…,m  and  j=1,…,n . (4) 
 
Generalized estimating equations (GEEs) provide an appropriate basis for analysis that accounts 
for both non-constant sampling probabilities, as well as for clustering of individuals (Diggle et 
al., 2002; Liang and Zeger, 1986).  In Section A.2 of the Appendix we use these estimating 
equations to derive a formula for the variance of the estimate of β1 under the clustered design.  
Due to the mean-variance relationship for binomial data, derivation of this formula is more 
complex and depends on a number of factors, including: 
 

• m = the number of clusters, 
• n = the number of individuals in each cluster, 
• ρ = the within cluster correlation in the health outcome, 
• λ = the within cluster correlation in the exposure factor, 
• p1 = the probability of exposure,  
• µ0 = the probability of disease for unexposed individuals, and 
• β1 = the log-odds ratio describing the strength of the relationship between outcome and 

exposure.   
 
We refer the reader to the Appendix for further details on calculating the variance of the 

estimate of β1 (the log-odds ratio) under a clustered design.     
 
3. Results 
  

In this Section, we display and discuss a series of figures representing the impacts of 
clustering for estimating relationships between continuous outcomes and continuous exposures 
across the entire cohort and within each cluster (Section 3.1).  Additionally, figures displaying 
the impacts of estimating relationships between binary outcomes and binary exposures across the 
entire cohort are also provided (Section 3.2).  In general, these impacts are evaluated in terms of 
design effects for estimating the relationship of interest and/or in terms of the power to detect a 
relationship of a specified size.  Instead of providing a design effect that is the ratio of the 
variance of the parameter estimate under the selected design to that of a simple random sample, 
we instead compute a relative design effect that is the ratio of the variance of the parameter 
estimate under the selected design to the corresponding variance under a design with 250 clusters 
of size 400 (i.e., since a simple random sample is infeasible in this setting).   
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3.1 Results for Continuous Outcomes and Continuous Exposure Factors 
 

First concentrating on the impacts of clustering in estimating the relationship between a 
continuous outcome and a continuous exposure across the entire cohort, Figures 1 and 2 display 
the relative design effect (ratio of parameter estimate variance under the selected design to a 
design with 250 clusters) for estimation of the relationship and the power for detecting the 
relationship, respectively.  In particular, since the relative design effect for estimation of 
relationships across the entire cohort depends on the within cluster correlation in exposure (λ) 
and on the within cluster correlation in the health outcome after removing the effect of exposure 
(ρ), Figure 1 displays the relative design effect as a function of λ, for different values of ρ and for 
different numbers of clusters (assuming an overall sample size of 100,000 individuals and a 
reference design with 250 clusters of size 400).  The figure indicates that as ρ increases the 
impact of clustering in the exposure factor (λ) changes, with the case of a cluster-specific 
exposure factor (λ=1) having the largest loss of information as a result of design clustering.  
However, note that in general, even for exposure factors with a large degree of within cluster 
correlation (e.g., λ less than 0.5), the relative design effect is very close to one in all cases.   
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Figure 1. Relative design effects (with respect to a reference design with 250 clusters of 

size 400) for estimating relationships across the entire cohort. 
 
 To translate these relative design effects for assessing an exposure/outcome relationship 
across the entire cohort to estimates of the power to detect that relationship, the magnitude or 
strength of the relationship must be specified.  Since very weak relationships will be 
undetectable with any design (i.e., the power will be equal to the significance level of the test 
regardless of the design) and very strong relationships are detectable with any design (i.e., the 
power will be equal to 1.0 regardless of the design), Figure 2 displays the power to detect a 
relationship that has a magnitude which is detectable with 80% power under a design with 250 
clusters of 400 individuals (note that this magnitude may change as a function of ρ and λ).  By so 
doing, the figure indicates the loss of (or gain in) power when attempting to detect a relationship 
that would be detectable with sufficient power if a 250 cluster design were adopted (i.e., treating 
the 250 cluster design as a reference design).  As seen in the relative design effects, there is very 
little loss of power as a result of design clustering when the within cluster correlation in the 
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health outcome is very small (e.g., ρ less than 0.0001) and/or the within cluster correlation in the 
exposure factor is small (e.g., λ less than 0.5).  On the other hand, for assessing relationships 
between health outcomes with large within cluster correlation (e.g., ρ larger than 0.01) and 
cluster-specific exposure factors (λ=1), the loss in power when going from a 250 cluster design 
to a 25 cluster design can be on the order of 60% (i.e., from 80% power to approximately 20% 
power).   

 
Figure 2. Comparison of power to detect an exposure/outcome relationship across the 

entire cohort. 
 

Assuming that to some degree exposure varies within cluster (so that λ is strictly less than 
1.0), estimation of a community-specific relationship is feasible.  As indicated in Section 2.1, the 
relative design effect for estimating a relationship within a cluster will depend only on the 
number of clusters, or the number of individuals within each cluster.  Thus, Table 2 displays the 
relative design effect, with respect to a reference design with 250 clusters of size 400, as a 
function of the number of clusters, and assuming an overall sample size of 100,000 individuals.  
As is intuitively reasonable, the table demonstrates than when the goal is estimation of 
relationships within a single cluster, a larger number of individuals in each cluster will lead to a 
more optimal design (i.e., smaller relative design effects).  Translating these cluster-specific 
relative design effects into estimates of the power to detect a relationship within a cluster, Table 
2 also displays the power to detect a relationship with a magnitude that is detectable with 80% 
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power under a design with 250 clusters of 400 individuals (i.e., a relationship with a magnitude 
such that the effect divided by the standard error of the effect under this design is approximately 
2.8).  As in the relative design effects, larger power to detect a within cluster relationship is 
realized when a larger number of individuals are sampled in each cluster.   

 
Table 2. Comparison of relative design effects (with respect to a reference design with 

250 clusters of size 400) and power when estimating an exposure/outcome 
relationship within a single cluster.   

 

Number of 
Clusters 

Individuals 
Per Cluster 

Relative Design Effect for 
Estimating Within Cluster 

Relationships 

Power for Estimating 
Within Cluster 
Relationships 

25 4000 0.100 1.000 
50 2000 0.200 1.000 
100 1000 0.399 0.993 
250 400 1.000 0.800 
500 200 2.005 0.507 

 
3.2 Results for Binary Outcomes and Binary Exposure Factors 
 
 Displaying design effects, or statistical power, when estimating relationships between a 
binary exposure factor and a binary health outcome is slightly more complicated since the 
variance of the estimate that describes the relationship between the disease and the exposure (i.e., 
the log-odds ratio) depends on a larger number of factors.  In particular, as described in Section 
2.2, uncertainty in the relationship (as estimated by the variance of the log-odds ratio) depends 
on the number of clusters (m), the number of individuals in each cluster (n), the within cluster 
correlation in the health outcome (ρ), the within cluster correlation in exposure (λ), the 
probability of exposure (p1), the probability of the disease for unexposed individuals (µ0), and the 
strength of the relationship between outcome and exposure denoted by the odds ratio 
[OR=exp(β1)].  Since displaying figures that allow all of these factors to vary would result in a 
large number of illustrations, we focus on just a few settings of the above factors that are relevant 
to the NCS.  In terms of disease prevalence, we focus on two examples, one representing a 
relatively rare outcome, such as autism or schizophrenia, with µ0=0.005 (i.e., a 0.5% chance of 
disease for unexposed individuals), and the other representing a more common outcome, such as 
asthma or obesity, with µ0=0.05 (i.e., a 5% chance of disease for unexposed individuals).  For 
both of these cases we will assume that the probability of exposure is 0.10 so that approximately 
10% of the population is exposed, and we allow all other factors (m, n, λ, ρ, and the OR) to range 
over a reasonable set of values.  In particular, as in Section 3.1, we evaluate designs with 25, 50, 
100, 250, and 500 clusters of individuals (always assuming a total sample size of 100,000), and 
allow ρ to take values of 0.001, 0.01, and 0.10 representing a reasonable range of possible within 
cluster correlations in subject-specific binary health outcomes and λ to take values of 0.01, 0.1, 
and 1.0 (with λ=1.0 representing a cluster-specific exposure variable).  
  
 Figure 3 displays the power to detect the exposure/outcome relationship as a function of 
the odds ratio (the strength of the exposure/outcome relationship) for a relatively common health 
outcome that has a response probability of 5% for unexposed individuals.  As in Section 3.1, 
there is very little loss of power when comparing designs with a smaller number of clusters if the 



Draft Technical Report – Task 9.2  June 2, 2004 10

within cluster correlation in the health outcome and the within cluster correlation in exposure are 
small (e.g., λ=0.01 and ρ=0.001 or 0.01); whereas, when ρ and λ increase selecting fewer clusters 
results in a loss of power with the magnitude of this loss depending on the specified odds ratio.  
Table 3 summarizes the information in Figure 3 by displaying the odds ratios that are detectable 
with at least 80% power (increments of 0.1) under the different designs and different degrees of 
clustering in exposure and health outcome.   
 

 
 
Figure 3. Comparison of power to detect a binary exposure/binary outcome 

relationship across the entire cohort for a relatively common health outcome 
(probability of disease for unexposed individuals of 0.05) and an exposure 
factor that occurs in 10% of the population. 
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Table 3. Odds ratios detectable with 80% power for a common health outcome 
(probability of disease for unexposed individuals of 0.05) and an exposure 
factor that occurs in 10% of the population. 

Odds Ratio Detectable with 80% Power 
ρ λ 25  

Clusters 
50  

Clusters 
100 

Clusters 
250 

Clusters 
500 

Clusters 
0 1.2 1.2 1.2 1.2 1.2 

0.01 1.2 1.2 1.2 1.2 1.2 
0.1 1.2 1.2 1.2 1.2 1.2 

0.001 

1 1.4 1.3 1.2 1.2 1.2 
0 1.2 1.2 1.2 1.2 1.2 

0.01 1.2 1.2 1.2 1.2 1.2 
0.1 1.4 1.3 1.2 1.2 1.2 

0.01 

1 2.0 1.7 1.5 1.4 1.3 
0 1.2 1.2 1.2 1.2 1.2 

0.01 1.4 1.3 1.2 1.2 1.2 
0.1 2.1 1.7 1.5 1.4 1.3 

0.1 

1 5.1 3.5 2.7 2.0 1.7 
0 1.3 1.2 1.2 1.2 1.2 

0.01 2.0 1.6 1.4 1.3 1.2 
0.1 4.2 2.9 2.2 1.7 1.5 

0.5 

1 >10 >10 5.9 3.5 2.7 
 
 Figure 4, on the other hand, displays the power to detect the exposure/outcome 
relationship as a function of the odds ratio (the strength of the exposure/outcome relationship) for 
a rare health outcome that has a response probability of 0.5% for unexposed individuals, and 
Table 4 displays the corresponding odds ratios that are detectable with at least 80% power.  
Comparing these plots to the plots displayed in Figure 3, larger odds ratios are necessary in order 
to detect a relationship due to the smaller probability of disease; however, in terms of evaluating 
the impact of clustering on the power to detect relationships similar conclusions are apparent.  In 
particular, the impact of clustering on statistical power and/or the odds ratios detectable with 
80% power are very small when λ and/or ρ are small, and increase as these values get larger.  
 
 



Draft Technical Report – Task 9.2  June 2, 2004 12

 
 
Figure 4. Comparison of power to detect a binary exposure/binary outcome 

relationship across the entire cohort for a relatively common health outcome 
(probability of disease for unexposed individuals of 0.005) and an exposure 
factor that occurs in 10% of the population. 
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Table 4. Odds ratios detectable with 80% power for a common health outcome 

(probability of disease for unexposed individuals of 0.005) and an exposure 
factor that occurs in 10% of the population. 

 
Odds Ratio Detectable with 80% Power 

ρ λ 25  
Clusters 

50  
Clusters 

100 
Clusters 

250 
Clusters 

500 
Clusters 

0 1.5 1.5 1.5 1.5 1.5 
0.01 1.5 1.5 1.5 1.5 1.5 
0.1 1.6 1.5 1.5 1.5 1.5 

0.001 

1 2.1 1.8 1.7 1.6 1.5 
0 1.5 1.5 1.5 1.5 1.5 

0.01 1.6 1.5 1.5 1.5 1.5 
0.1 2.1 1.8 1.7 1.6 1.5 

0.01 

1 4.5 3.3 2.6 2.1 1.8 
0 2.9 1.7 1.6 1.5 1.5 

0.01 3.7 2.2 1.8 1.6 1.5 
0.1 7.1 4.0 2.8 2.1 1.8 

0.1 

1 >10 >10 7.5 4.5 3.3 
0 >10 >10 4.3 1.7 1.6 

0.01 >10 >10 5.1 2.2 1.8 
0.1 >10 >10 9.2 4.0 2.8 

0.5 

1 >10 >10 >10 >10 7.5 
 
 In terms of evaluating the impact of clustering when estimating a community-specific 
relationship between a binary outcome and a binary exposure (assuming that to some degree 
exposure varies within cluster), we envision the results will be the same as those displayed in 
Table 2.   
 
4. Conclusions 
 
 The results in Section 3 demonstrate the statistical considerations relevant to clustering 
the NCS design in a number of geographic communities, and provide comparisons of the loss or 
gain in statistical efficiency (in terms of relative design effects or statistical power) when 
estimating relationships between exposures and health outcomes.  In particular, designs with 25, 
50, 100, 250, and 500 clusters (each assuming a total sample size of 100,000 individuals) were 
compared for hypotheses involving estimation of relationships between outcomes (binary and 
continuous) and exposures (binary and continuous) across the entire cohort, and for hypotheses 
involving estimation of relationships between continuous outcomes and continuous exposures 
within a single cluster (i.e., cluster-specific relationships).   
 

In terms of statistical efficiency when estimating relationships across the entire cohort, 
the loss or gain associated with a clustered design depends on the characteristics of the exposures 
and the health outcomes of interest.  In particular, the amount of within cluster correlation in the 
health outcome (denoted as ρ in the results of Section 3) along with the amount of within cluster 
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correlation in the exposure factor (denoted as λ in the results of Section 3) has significant 
influence on the loss/gain in statistical efficiency resulting from clustering the design.  In 
general, when these correlations are small, so that the health outcome and the exposure factor 
primarily varies within cluster, there are little to no differences between designs with 500 
clusters of 200 individuals and designs with 25 clusters of 4000 individuals (i.e., there is little 
loss of information resulting from clustering the design).  On the other hand, for cluster-specific 
exposure factors (i.e., an exposure factor that only varies between clusters and is constant within 
clusters) and for larger values of the within cluster correlation in the health outcome the impacts 
of design clustering are less trivial.   
 

Therefore, in order to further quantify the impacts of clustering and to indicate the 
tradeoffs inherent in selecting a design with a larger or smaller number of clusters, we must 
consider reasonable values for the within and between cluster variability in exposures and health 
outcomes of interest in the NCS.  The NCS primary health outcomes (asthma, obesity, pregnancy 
outcomes, neurodevelopmental and behavioral outcomes, injury outcomes), are evaluated on a 
subject-specific level and will arguably have a relatively small degree of geographic clustering 
(i.e., small amount of within cluster correlation in health outcomes).  For exposure factors, on the 
other hand, there are certainly exposure factors that vary primarily within cluster (e.g., personal 
activity levels, exposure to pesticides, exposure to mediators of inflammation, etc.) as well as 
factors that vary primarily, or only, between clusters (e.g., community-level PM2.5 
concentrations, community-level housing variables, etc.); however, since most of the NCS core 
hypotheses call for subject-specific analyses, and since many of the variables that vary only 
between clusters may be interacted with subject-specific variables to form an “exposure” 
variable (e.g., interaction of community-level PM2.5 concentrations and subject-specific activity 
patterns to form a PM2.5 exposure metric), it may be reasonable to assume that most of the 
primary exposure covariates will have significant within-cluster variability.   
 

Thus, under the assumption that there is a relatively small degree of within cluster 
correlation in the health outcomes and exposure factors of primary interest in the NCS (i.e., a 
significant portion of the variability in the health outcome and the exposure occurs within a 
cluster), there appears to be little loss of statistical efficiency in estimating relationships across 
the entire cohort (small relative design effects and little loss of power) when comparing designs 
with 50 or 100 clusters to designs with 250 or 500 clusters.  Balanced against other 
considerations related to sample clustering, such as the financial efficiencies of data collection in 
a smaller number of geographic regions, this suggests little need for selecting a large number of 
clusters in the NCS.  This is not meant to suggest that there is no advantage to selecting a design 
with a larger number of clusters, but rather we are suggesting that there does not appear to be a 
significant statistical advantage to selecting a design with 250 or 500 clusters as compared to a 
design with 50 or 100 clusters.  This makes the overall advantage (i.e., when considering all 
factors, not just statistical, related to sample clustering) to a larger number of clusters less 
attractive.  Adding further argument for a smaller number of clusters is the greater statistical 
efficiency for estimating within-cluster relationships given a design with fewer clusters (and a 
large number of individuals in each cluster).     

 
Of course, it must be noted that the above conclusions rely on the assumption that there is 

a small degree of within cluster correlation in the health outcomes and the exposure factors that 
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are of primary interest in the NCS.  That is not to suggest that there are no exposure factors or 
health outcomes that primarily vary between clusters, or that there is no interest in evaluating 
these types of outcomes or exposures.  Certainly there are community-level effects, such as 
average housing age or median household income, that are of interest to a large portion of the 
scientific community.  For evaluating only these types of exposure factors or evaluating cluster-
specific health outcomes, there are clear advantages to selecting a larger number of clusters.  
Additionally, given that the NCS is called to serve as a resource for future hypotheses and 
studies, there are definite arguments for a design that selects a larger number of clusters.   
 

As suggested in Section 1, in addition to the statistical advantages/disadvantages relevant 
to determining the appropriate number of clusters for the NCS, there are a variety of other 
important factors (e.g., cost considerations, data availability considerations, etc.) influencing this 
decision.  While the statistical efficiency results discussed in this report did not incorporate these 
other factors (for example we did not consider the possibility that a 25 cluster design may 
provide a larger amount of data or a higher degree of study subject retention due to financial 
savings of data collection being rerouted to other Study activities), the ultimate decision of the 
number of clusters must consider them in conjunction with the statistical considerations related 
to sample clustering.  The results presented above provide a detailed analysis (and a means of 
providing further evaluation and assessment of power for a selected hypothesis under any 
clustered design) of the statistical impacts associated with sample clustering in the NCS.  By 
combining these considerations with the other factors influencing the determination of the 
number of clusters, an informed decision as to the appropriate number of clusters for the NCS 
can be made. 
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Appendix A - Statistical Methods: 
Efficiency Considerations for Clustering  

the National Children’s Study 
 
 
 
A.1 Continuous Outcome and Continuous Exposure Factor 
 

To compute the precision when estimating a relationship between an exposure and an 
outcome in a clustered design, we begin from first principles.  Letting Xij be the exposure for 
individual j in cluster i, and Yij this individual’s corresponding response/outcome, suppose that 
the relationship between the outcome and exposures is as follows:    
 

Yij = β0 + αi + β1*Xij + εij     for i=1,…,m  and  j=1,…,n 
 
or in matrix notation 
 

εαβ ++= ZFY  
 
where β=( β0, β1)T are the parameters of the model, α=(α1, …, αm)T is a vector of independent 
mean zero normally distributed random effects for each cluster (with standard deviation σb), 
ε=(ε11, …, ε1n, …, εmn) is a vector of independent mean zero normally distributed errors for each 
individual (with standard deviation σw), and F and Z are the fixed and random effects design 
matrices, respectively.  The model indicates that there is some relationship between the health 
outcome Y and the exposure factor X.   The strength of this relationship depends on the value of 
β1, the parameter of interest, relative to the distribution of X and the magnitude of the standard 
deviation for αi and εij.  Additionally, inclusion of the random effect α allows for clustering in the 
health outcome that is not explained by its dependence on the exposure factor.   
 

Given the values of the exposure variable (i.e., given the Xij’s), the maximum likelihood 
estimate for β and it’s corresponding variance is given by  

 
YVFF)VFβ 1T11T −−−= (ˆ  and 11T F)VFXβ −−= ()|ˆVar( , 

 
where V represents the variance-covariance matrix of the vector Y.  Focusing on the estimate of 
β1, the parameter describing the relationship between exposure and outcome, and simplifying the 
above expression we have 
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where •ix  represents the mean of (xi1, …, xin), and ••x  represents the mean exposure over all 
individuals.  The formula can be derived by noting that F is an nm by 2 matrix with one’s in the 
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first column and the xij’s in the second column, and V is a block diagonal matrix with m blocks 
of size n by n each having 22

wb σσ +  on the diagonal and 2
bσ  on the off diagonals.  In other 

words, m1 IVV ⊗= where nn1 JIV 22
bw σσ += , Ip is the p by p identity matrix and Jp is a p by p 

matrix of one’s.  In this case, mIVV ⊗= −− 1
1

1 and nn JIV
)( 222

2
21

1
wbw

b
w n σσσ

σ
σ

+
−= −− , which can 

be used to derive the above formula.     
 

This provides a formula for the variance of the estimate of the relationship between the 
health outcome variable and the exposure variable.  To compute the marginal variance of 1β̂  we 
can remove the dependence on the exposure variable, X,  by specifying a distribution for X and 
taking expectations over this distribution.  For example, assuming that 
 

Xij = µ0 + νi + δij     for i=1,…,m  and  j=1,…,n 
 
where νi and δij have mean zero and standard deviations τb and τw, respectively.  Using a taylor 
series expansion we have  
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where 22

2
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b

ττ
τ

λ
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=  is the within cluster correlation of the exposure variable and 22

2
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b

σσ
σ

ρ
+

=  is 

the within cluster correlation of the health outcome after removing the effect of X.  Note that the 
parameter ρ does not represent the marginal within cluster correlation in the health outcome, but 
represents the within cluster correlation in the health outcome given the exposure factor.  The 
marginal within cluster correlation in the health outcome depends on this conditional clustering 
as well as the amount of clustering in the exposure factor and the strength of the relationship 
between the health outcome and the exposure factor. 
 

One common measure when comparing different designs is in the design effect which 
represents the ratio of the parameter estimate variance under the selected design to the parameter 
estimate variance under a single common design (e.g., a simple random sample design).  Based 
on the above formula, the design effect resulting from clustering the subjects in m clusters of size 
n when estimating a relationship across the entire cohort (i.e., the ratio of the variance of 1β̂  for a 
design with 1 subject for each of N clusters to a design with n subjects for each of m clusters 
such that N=mn) can be written as 
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On the other hand, if interest were in estimating the relationship between the exposure factor and 
the health outcome for a single cluster of individuals, or each cluster separately, (i.e., Yij = b0i + 

b1i*Xij + eij for j=1,…,n) then the variance of the estimate of ib1̂  would be 
)1(2

2

−nw

w

τ
σ

, and the 

ratio of this variance for a design with m clusters of size n to a design with 1 cluster of size mn is 

then 
1
1

−
−

n
mn , representing the impact of clustering when estimating relationships within a cluster.  

(Note that in order to apply such a model the exposure factor of interest must vary within clusters 
so that the within cluster correlation of the exposure factor, λ, cannot be equal to 1.0.)   
 

Figures A.1 and A.2 display design effects for estimation of relationships across the 
entire cohort and estimation of relationships within a single cluster, respectively.  In particular, 
since the design effect for estimation of relationships across the entire cohort depends on the 
within cluster correlation in exposure, λ, and on the within cluster correlation in the health 
outcome after removing the effect of exposure, ρ, Figure A.1 displays the design effect as a 
function of λ, for different values of  ρ, and for different numbers of clusters (assuming an 
overall sample size of 100,000 individuals).  On the other hand, since the design effect for 
estimating a relationship within a cluster depends only on the number of clusters (or the number 
of individuals within each cluster), Figure A.2 simply displays the design effect as a function of 
the number of clusters (again, assuming an overall sample size of 100,000 individuals).  
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Figure A.1. Design effects (with respect to a simple random sample) for estimating 

relationships across the entire cohort. 
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Figure A.2. Ratio of variance for estimating a within cluster relationship for a design 

with the specified number of clusters to the corresponding variance for a 
design with a single cluster.  

 
 
 To translate the design effects for assessing an exposure/outcome relationship across the 
entire cohort to estimates of the power to detect the relationship, Figure A.3 displays a series of 
power curves for assessing a relationship that has a magnitude which would be detectable with 
80% power under a design with no clustering (i.e., a relationship with a magnitude such that the 
effect divided by the standard error of the effect under a design with no clustering is 
approximately 2.8).  
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Figure A.3. Comparison of power to detect an exposure/outcome relationship across the 

entire cohort. 
 
 

Finally, to translate the design effects for assessing an exposure/outcome relationship 
within a single cluster to estimates of the power to detect the relationship, Figure A.4 displays 
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the power curve for assessing a relationship that has a magnitude which would be detectable with 
80% power under a design that selects all individuals in a single cluster (i.e., a relationship with a 
magnitude such that the effect divided by the standard error of the effect under a design with all 
individuals in one cluster is approximately 2.8).  
 

 
 
Figure A.4. Comparison of power to detect an exposure/outcome relationship within a 

single cluster. 
 
 
 
A.2 Binary Outcome and Binary Exposure Factor 
 

As above, let Xij be the exposure for individual j in cluster i and let Yij be this individual’s 
corresponding response, and suppose also that we are interested in fitting the following marginal 
logistic model: 
 
 Logit[Pr(Yij=1|Xij)] = Logit(µij) = β0 + β1 Xij.  (1) 
 
(In practice, of course, there will also be interest in including additional covariates and risk 
factors.)  Generalized estimating equations (GEEs) provide an appropriate basis for analysis that 
accounts for both non-constant sampling probabilities, as well as for clustering of individuals 
(Diggle et al., 2002; Liang and Zeger, 1986).  Letting wij be the sampling weight for the jth 
individual in the ith cluster (generally, this will be the inverse of their selection probability), a 
suitable estimating equation for the unknown parameter β=(β0,β1)T is  
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where m is the number of clusters, ni is the number of subjects in cluster i, and µij is the mean 
response for individual j in the ith cluster.  (Note that interest here in this paper is in assessing the 
impact of clustering, not the impact of unequal weighting.  Thus, in the results presented we 
assume all wij’s are equal; however, in these calculations we provide the more generic derivation 
of these results by incorporating the wij’s.)  Standard estimating equations theory can be used to 
establish that the variance of the parameter estimates, β̂ , is 
 
 11 )()ˆVar( −−= TBABβ   (3) 
 
where B is the matrix of partial derivatives of U(β) and A is the variance of U(β).  This is the 
calculation automatically performed in software such as SUDAAN or SAS PROC GENMOD (if 
the empirical variance option is invoked).  It is relatively straightforward to show that 
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where j and j’ represent two arbitrarily chosen individuals from the ith cluster and ρ refers to the 
within-cluster correlation with respect to the outcome, Y.  (Note that we have made the 
assumption here that the intra-class correlation (ρ) is constant for all subjects, and not dependent 
on the value of covariates.)  In certain cases, the expression for the Var( β̂ ) simplifies.  For 
example, suppose that the covariate of interest, X, is binary (e.g., presence/absence of exposure) 
and is cluster specific so that xij is the same for all members of the same cluster.  Then, A and B 
simplify and in large samples will approximate the following:  
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where E(wi) refers to the average of the weights for the ith cluster,  and 
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with E(.) again referring to an average over the cluster.  A few more special case considerations 
are helpful.  First, consider the case where there is no within-cluster correlation (ρ=0) and also 
assume that the weights are independent of cluster membership and exposure, hence can be 
pulled out of the sums.  It follows in this special case that  
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Note that this expression corresponds to the standard variance estimate based on a logistic 
regression, multiplied by a factor that involves the weights.  The multiplicative factor can be re-
expressed as:  
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or 1 plus the squared coefficient of variation of the weights.  When the weights are constant, this 
factor equals 1 and the standard logistic regression variance formula applies.  When the weights 
vary, then this factor will always exceed 1; hence the variance of parameters estimated using 
weighted estimating equations will always exceed those based on a simple logistic regression.  
This is a well known result among sample survey statisticians, and the extra term is often 
referred to as a design effect.  These design effects provide a very useful tool when it comes to 
study planning and design, since one can think in terms of the impact of various different 
weighting schemes on the estimated variances of parameters of interest, and adjust accordingly.   
 

Now consider the slightly more complex setting where the intra-cluster correlation, ρ, is 
non-zero. Using a similar logic, it is relatively straightforward to show the design effect (or the 
factor that multiplies the usual logistic regression variance) is: 
 
 )cov()1()1(1 '

2
ijij wwnCVn −++−+ ρρ ,  (10) 

 
where n is the average cluster size and the covariance term refers to the covariance between 
weights within the same cluster.  In general, we would expect this covariance term to be 0.   In 
the special case where the weights are all equal (variance and covariance of the weights equal  
0), the design effect reduces to (1+ρ(m-1)), which is the usual inflation factor for a variance 
based on cluster data (see Diggle et al., 2002).   
 

When the covariate of interest, X, is allowed to vary within-cluster, all these calculations 
become considerably more complicated.  To facilitate our discussion here, consider the case 
where exposure is binary and let p1 denote the probability that an individual is exposed, and 
p0=(1-p1) the probability that an individual is not exposed.  Also, for simplicity, we define µ1 to 
denote the response probability for exposed individuals and µ0 the response probability for an 
unexposed individual.  Then, it is relatively straightforward to show that the derivative of the 
estimating equation (see Equation (4)) will, in large samples, be approximately 
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where, as before, n is the average cluster size and ∆1 refers to the term in square brackets.  
Similarly, the variance of the estimating Equation (5) will be approximately:  
 
 [ ]),()1()( '2

2
1 ijij wwEnwEmnA ∆−+∆= ρ ,  (12) 

 
where ∆2 is more complicated and equal to the following: 
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where p11 is the probability that two members of a cluster are both exposed, p00 is the probability 
that they are both unexposed, and p01 and p10 refer to the probability that one is exposed and the 
other is not exposed.  In this complicated setting, it is not as straightforward to specify a design 
effect.  However, consideration of some special cases for ∆2 is worthwhile and allows us to 
explore the impact of various correlation patterns on estimated variances.  First, consider the 
special case where there is perfect within-cluster correlation with respect to exposure values, 
meaning that p01 and p10 are both zero, p11=p1 and p00=p0.  In other words this is once again the 
cluster-specific covariate case, where all subjects in a cluster are either exposed, or all subjects in 
a cluster are unexposed.  In this case, ∆2 is identical to ∆1, and the design effect is once again 
given by equation (10).  Alternatively, for the case where there is no within-cluster correlation 
with respect to X, we have p11=(p1)2

 , p00=(p0)2 and p10=p00=p0p1.   
 

To derive more generic formulas for p00, p01, p10, and p11, we assume that the X’s follow 
a beta-binomial such that 

 
 Pr(Xij=1|πi) = πi  (14) 
 
where πi is the cluster-specific probability of response, and the πi's follow a beta distribution: 
 
 πi ~ beta(α1, α2).  (15) 
 
The beta parameters α1  and α2 are chosen so as to produce the desired marginal probability of 
exposure (p1)  and the desired within cluster correlation in the X’s, λ.  Under these assumptions 
we have p00 = (1-p1)2+p1(1-p1)λ, p11 = p1

2+p1(1-p1)λ, and p01 = p10 = p1(1-p1)(1-λ).   
 

Using the above formulas, it is easy to use a computer package such as R or Splus to 
compute the variance of the estimated parameters under various assumptions on the degree of 
clustering and weighting.  In particular, putting equations (11) and (12) together as in equation 



Draft Technical Report – Task 9.2 A-11 June 2, 2004 

(8) we get the approximate variance of the estimated parameter under the clustered and weighted 
design as:  
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In contrast, the variance under simple random sampling is: 
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Note that in general, there is no simple multiplicative relationship here, as we saw in the setting 
of cluster-specific covariates.  Indeed, the relationship between variance estimates under simple 
and complex sampling differs according to which component of the parameter vector is being 
examined.  To examine the ratio of the variances for the coefficient β1 (i.e., the parameter that 
estimates the relationship between the health outcome and the exposure) we simply pull off the 
(2,2) elements of these two variance expressions and take their ratio.  Additionally, note that the 
above formula depends on the number of clusters (m), the number of individuals in each cluster  
(n), the probability of exposure (p1), the within cluster correlation in exposure (λ), the probability 
of the disease for unexposed individuals (µ0), the within cluster correlation in the health outcome 
(ρ), the strength of the relationship between outcome and exposure (OR), and the degree of 
unequal weighting in the design. 
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